
Calculation of the Modified Bessel Functions of 
the Second Kind with Complex Argument 

By Fr. Mechel 

In physical problems often the modified Bessel functions Kn(z) with complex 
argument z occur, or the Hankel functions of the first kind Hn(1) (z) which are re- 
lated to Kn(z) by Kn(z) = (r/2) i n . (iz) , with i = (- 1)'2. Computationally 
rapid and fairly exact procedures are available for the evaluation of these functions 
for real or imaginary argument either by recurrence, [1], [2], or by polynomial ap- 
proximations, [3]-[7]. With complex argument, methods of computation were pub- 
lished which start from the representation by integrals of the modified Bessel func- 
tion, [8], [9], [10]. 

Hunter [10] makes use of the integral 

(1) K.(z) - X +e2)z j__ exp [-t2]t2,(2z + t2)n-12 dt 

valid for I arg z I < 7r. The integration can be approximated by summation according 
to the trapezoidal rule. This representation, however, fails for small I z j (j z I < 2, 
say), both because of the increase of the integration error and because z in the 
integrand enters as a summand. Whereas, on the other hand, the evaluation accord- 
ing to 

(2) Kn(Z) exp [-z cosh t] cosh nt dt, arg zl < r/2 

proposed by Fettis [8] and Luke [9] has its maximum accuracy for small I z 1, the 
restriction on the argument, however, for many applications is too severe, the more 
so as the computation will diverge near the imaginary axis. In a trial computation 
this range of divergence could not even be eliminated by a polynomial approxima- 
tion near the imaginary axis according to [6]. 

These drawbacks are avoided with the integral representation [11], [12], dis- 
cussed in this paper: 

z - Cosnir -2 

(3) 
Z = (27 7)3/i * O 1r *2 

*arw8r (2-s- n) r (2 - s + n) (2z)5 ds 

which is valid for I arg z I < 31r and 2n no odd integer. The path of integration must 
separate the poles at s -m, (m = 0, 1, 2) of the first gamma function P(s) from 
the poles at s = I + m - n and s-2 + m + n of the other gamma function factors. 
For the special cases n = 0 and n = 1 the poles and the paths Ln of integration are 
represented in Figure 1. 

With n = 1 the integrand has the residue (27r/z)112 at the pole s - -4. With 
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FIGURE 1. Paths of integration Ln and poles of (3) for n = 0 and 1. D pole of r(s), X pole 
of r(I - s - n), Z pole of r(t - s + n). 

the theorem of residues the paths Ln can be transformed into the one path L parallel 

to the imaginary axis in a distance s = 4. After transformation of the variable of 

integration s = 4 + it and using the recurrence relation of the gamma function we 

finally obtain for Ko(z) and Ki(z) the representations 

e__ (2z) 1/4 ff0 (1 it (1 i) 

(4) Ko(z) = (2)32 J r + it r - it (2z)" dt, 

(5) K~(z) = [zii2 (2K)I f+zr (! + it) p2 - it)ji- (2zYt dt] 

For the numerical evaluation this representation has several advanitages: 

(1) In the simply covered z-plane there is no limitation of the validity outside of 

the singular point z = 0 provided z, in the computation, is written z = r- e io with 4) 

restricted to I 4 1 <-. 
(2) The argument z enters as a factor into the integrand. This factor is 

(2z)t = e-t[cos (t ln 2r) + i sin (tl n 2r)]. Large absolute values r >> 1 and small 

ones r << 1 differ from one another only by the sense of rotation of the factor in the 

brackets. Another advantage is the fact that r appears only with its logarithm thus 

avoiding the exceeding of the argument range of library subroutines of the cos and 

sin functions in electronic computers. 

(3) The absolute value of both of the integrands converges for I t I 0 towards 

(27r)3/2. 1 et -3/4- exp (- - r I t- to). The rate of convergence of the integrands is 

different on the two branches of the path L on both sides of t = 0 by the factor 

exp (?to). In the simply covered z-plane I) I < 7r. So even on the "slow" branch 

the convergence is as good as I t -31/4 exp (-(/7rl2)j t ) . 
(4) The factor P({ + it)r2(( - it) can be stored as system constants at the 

points of integration. This factor is conjugate complex on the two branches of the 

integration path. Further, r(P + it) and r(! - it) are the conjugates of one 

another. So the gamma function needs only be evaluated for one branch. 

The gamma function can be easily computed from its asymptotic expansion 

1ti 
ln 1P(z) = -- ln27r + z-2-ln z-z +;1(z), for I z ? >> 1 

22 
n-1 

Vt'(Z) = Z 12k +R( 
k=1 2k(2k - 1)z2k- + Rn(z), 

R,0(z) I < 
I 

- 1 I 
2n(2 - 1) IjRe ZI12n'' 
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B2k the Bernoulli numbers. In [13] At(z) is written in the form At(z) = Sk-1 Ak/z2kl 

and the Ak are tabulated to 25 significant figures. For Re z > 10 the error on the 
abscissa (where it is greatest) is RI,(z) < 1.4.10 19. The function r(z) for 
0 < Re z < 10 can be evaluated with the recursion formula of the gamma function. 

(5) Finally, the integrands are well suited for integration with the trapezoidal 
rule. This will become evident by the succeeding estimation of the error of integra- 
tion. Two components of the error should be distinguished: the error due to the 
truncation of the summation in the trapezoidal rule and the error inherent to the 
trapezoidal rule itself. 

The truncation errors ET(M?) made by a truncation of the summation after 
M+ - 1 in the "fast" branch of integration or after M_ - 1 in the "slow" branch 
are discussed in the appendix. They are of the order of magnitude of 

ET(M?) I < I Tm I e1/4( 1 + 1/4M?h) (h/2 + 1/(3X/2 + I I)) 

where TM. is the first neglected term in the sums and h is the step width of the 
trapezoidal rule. The truncation error is of the order of magnitude of the first 
neglected term in the sum. 

To get a bound for the error of the integration of (4) and (5) inherent to the 
trapezoidal rule we make use of Poisson's summation formula, [14], 

.+00 +00 +00 

(6) j f(x) dx = h Z, f(kh) + E J f(x) exp [i2irlcx/h] dx. 
oo k- 0oo k7&,-/-0 ?? 

Here the first term is just the trapezoidal rule and the second term is the error E. 
For application of (6) we write in (4) and (5) the integrals 

+00 +00 
(7) F (z) = f G2n(t, z) dt = f gn(t2, ) exp [it.ln 2r] dt, n = 0, 1. 

Then the error is 
r+0 

En(h, z) = Z f gn(t, 0) exp [it(ln 2r + 27rk/h)] dt 
k,:d=O X0 

+00 

-# X.F(2""Z) 

k#O 

Fn(z) can be obtained from (4) or (5): 

Fn(z) = 25147r3/2ezZl/4[3n,. z-1/2 + (_1) nKn (z)]. 

With small steps of integration h the terms in the sum of (8) will contain, for k > 0, 
modified Bessel functions with large absolute values of the argument and, for k < 0, 
those with small absolute values of the argument. Therefore, the approximations 

Kn(Z) -z()12) 2 for IzI >> 1, 

and 

Ko(z) ;t ln 2-ln z; K, for I z I << 1 
7 z 

(-y = 1.781 .. Euler's constant) can be used. 
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Then after some computation and dropping small terms we have for the error of 
integration for Ko(z): 

27r2 ?o 27r2 e-r/2h 
(9) Eo(hy z) I:( )/ E e/2 = _~ E0(h,z) ~(2z)"14 k=1 (2z)'14 1 e- erI2h 

and for the integration of Kl(z): 

(10) El(h, z) ;t (27r) 32 [(z/2)1/4 - ()12 (2)-1/4] e 1 
2 

2 ~~~- e-I2 

These formulas again reflect the small influence of the order of magnitude of z on 
the accuracy of the integration. 

The formulas (4) and (5) were used for the computation of Ko(z) and Ki (z) on 
an IBM 7040 computer with double precision (17D). The trapezoidal rule was 
applied. The results were checked on the axes of the z-plane against a program 
(after [3]) with 15 decimals accuracy. With a step h of 0.05 the accuracy on the 
positive real axis and on the imaginary axis was 10 to 15 decimals. The smaller value 
belongs to large imaginary arguments. The accuracy on the negative real axis was 
better than 5 decimals. Here the summation did not go far enough to obtain the full 
accuracy predicted by (9) and (10) . 

As a trial the integration of (4) and (5) was performed also with use of Simpson's 
formula. With equal step h this resulted in a loss of about 4 decimals of accuracy. 

The computation of the modified Bessel functions using (4) and (5) needs 
smaller steps h than with the formulas (1) and (2). This is the price for the greater 
range of validity of the argumenit z. However, the computational work can be re- 
duced if we exploit the facts mentioned in item (4). 

For explanation we denote with un (t) the z-independent factors in the integrands 
of (4) and (5) (where at least the factor with the gamma functionis is stored as a 
system constant). We further write the integrands 

G.(t, z) = un(t)(2z)it = u (t) exp [it ln 2r]e-'o = vn(t, r)e-t' 

with vn(t, r) = vi', + ivn and vn(-t, r) = vn*(t, r) (where * denotes conjugate com- 
plex). Then the integrals are 

(11) Fn(z) f |[fvel lt(1 + e-2it) = i-vnlelklt(1 - e2If1t)l ct 

where the upper sign in the brackets holds for qS > 0 and the lower sign for q5 < 0 
whereas for 4 = 0 only 2vn' remains under the integral. With the trapezoidal rule 
(11) becomes 

Fn(Z) =h EnP (2:' + >2 Vn'(kh, r) e1'I, k(1 + e-21'1kh) 
(12) ( 4) k=l 

( Vn V/ (kh, r)e!klkh(1 - e-211kh)] 

with Eo 1 and El = - . The upper summation limit A! is determined by the 
number N of exact decimals that are desired. M is given by 

M = N/[h(log e)(1.Sir- 5 P 1)1 
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Further, the terms (1 ? e-2l lkh) can be replaced by unity for k > M1 with M1 = 

Nl/[2h(log e) (1.57r + 1 1)] where N1 is the number of significant digits in the 
computation. Finally, the factor exp [jkh* ln r] can be computed by iterated applica- 
tion of the addition theorem of the trigonometric functions. In order to control the 
increase of the multiplication error in this term it is advisable, however, to compute 
it anew after an interval Ak (of Ak = 10, say). A similar procedure for e101kh would 
destroy the accuracy. With these simplifications the operations that remain are 
mainly the evaluation of eI1Ikh and complex multiplications. 

APPENDIX 

Estimation of the Truncation Error. In the trapezoidal rule (6) the summation 
index k is assumed to run to 4t oo. In practice, the restriction to a finite limit for 
k brings a truncation error ET into the result. In contrast to (12) where the same 
upper limit M of the summation index k was used for both the "fast" and the "slow" 
branch of integration we now assume the absolute value of k to go to M+ - 1 
and M_ - 1 in these branches respectively. The truncation error of the sum then 
is ET = ET(M+) + ET(M-). For simplicity, we restrict ourselves to the error of 
Ko . However, for I kh I > M?h >> 1 the absolute value of the fraction in the in- 
tegrand of K1 approaches unity, so the result holds for K1 too. 

For t I >> 1 the absolute value of the integrand Go(t, z) can be approximated by 

G(t, z) I (2r)"32e-l2 exp [-3ir t 1/2]1 t l-3/'(1 + (1/41 t 1))et, 

where the asymptotic expansion of the gamma function and the approximation 

argQ.+it) 2 2 + + 192t 

were used with the first two terms. 
With this and with the notations a = (27r)"1e"2 and T? = M?h the trunca- 

tion error becomes 

E ]h(M?) | a exp [-Th ( ? ck)] h X (kh + TJ3) 

4 (+4(kh + Tj) ep[-h(2+ ). 

The sum can be interpreted as an approximation to an integral. (The error of this 
approximation is of the same order of magnitude as the error of the trapezoidal 
rule when applied to Ko .) The integral leads to the Whittaker function Wx,, (x). 
Therefore, we have 

I ET(M0) I < a exp [-T?(37r/2 
h 

4)] [h (T+-34 + 
I 

T+-7i) 

+ T73/8 (3r ? ,)-5/8 W3318,11 (T 7 (r ?4')) 

I 
T7/8 (37r ? > -7/8,3/8 (T 

3 ( 4 i ))]. 
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For our application, the argument of the Whittaker function is large enough to 
use the asymptotic expansion of the function. Then we have: 

E ET(M) I < (2r) 312e-1"2 exp T, (3r 4 T+114 [h (T + 4T2) 

+ 41 4T )[+ (2 ( + 167T-. _ [T T (32 - + @] 

If we separate the first neglected term of the sum and omit the quadratic term in the 
formula above we obtain the estimate of the truncation error quoted in item (5) 
of the text. 
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